
lecture t

Private Information Retrieval
Extension 's

'
-

MIT - 6.893
fall 2020

Henry Corrigan- Gibbs



Plan
-

* Discuss
- Most important pr.ir/sec
issues out there

.

- what would you like
to see covered?

* Recap : PIR -

* Longer DB rows Logistics

:÷.¥¥÷÷÷. :÷÷÷÷÷* Batch PIR (Hw out 9/22)
+ efficiency rn serve

- Anonymity on
Piazza



Recap : Private Information Retrieval
-

Read a row of a database w/o database

learning which row you read .

→ Should be surprising that this is even possible!.

Two flavors : multi -server +no assumptions (info theoretic
security)

-2 ' non- colluding servers
(where do you get 2
non - colluding Googles?

Single- server + one server (easier to deploy)
- use relatively heavy
crypto (public - key)

To give a sense of the performance :

latest 1-seven is 80 MBTs server throughput
2- server I 35,000 MBI s

'
'

' '

Em

Properties : I . Correctness
•

2. Security . Et - server] then Vi ;
'
c- Cn]

{Query (Iii) } a. { Query i
'))

.



All ideas we will see today
make

"

black - box
"

use of the

underlying PIR scheme
.

→ Apply to both the

single - and multi - server

settings .



PIR for longer DB rows
.

if

On Monday , each row was I bit long .

Now
,
each row is l bits long .

Naive solution : View DB as a single n - l - bit - string .:÷:÷÷÷*÷÷¥:"Tn)

Better idea : Think of client as fetching bit iefs)
from l distinct databases

.

Upload : UH I ⑦ .
.
. .g

Download : l - DIN) Bit 1 of all Bit 2 f- all Bite of

n vous
throws all n rows

↳ T.it"
rn . ern

O
-Ole - rn) cost . f̂

↳
When l grows large can trade upload for
download to decrease cost further.



PIR by keywords
-

(Chor, Gilboa, Naor
'

97)

standard P.IR i DB is X -40,13
"

client holds ie (n)
Client wants Xi c- 1913 .

PIR by keywords : DB is { key , , . . . . , keyn }
y

l- bit strings
Client holds string SEG, Bd
Client wants to know s Ef key, -→key)

→ Extension to (key, value) lookups is almost immediate.←

Key - value API may
be useful (e.g . for DNS) .

↳ Not the end of the story . .
. fuzzy text

search would be even more useful .

We will show :

K - server PIR scheme
"

k-serverPIRbykeywTysche.mewith⇒i%:÷÷÷÷:i÷:i



i' " I
= - :

its



7

Construction
-

Idea : clever use of hashing .

Let ft :{o
,
1.31- Cn] be a hasty fin

that we model as randomoraok-falm.gg
Not necessary here

,
but

simplifies the analysis
f

@n

Two steps .

⑦ Assign each key to one of n buckets .

(Using hashing)
② Store the contents of all n buckets

in an array of size 53N .

(Using hashing again)
B

Bucket a }n



Step : Assign keys to buckets
.

Just hash each key with H
.

mmmm
Problem : Each bucket

Bin 1 I ¥i% coytgeg.in . a different

standard balls - in - bins result :
Bin 2 Er 04gal bins in heaviest -

com
loaded bucket

.

Dmm
Bin 39 e.gn { Bucket 1

,

I

Binn r Jeong .- keys
Bucket n



Steps : store all buckets in an array of
size 3h .

Er each bucket bell , . . . .nl , with load bn
,

find a hash for

hb : 90,131→ (n;]
sit

. $ keys kid in bucket b w/ hblk)=hb(k ') .
(Assume that we can find such an hb .)

POINTER TABLE Darn
.
TABLE

offset, →
I h , offset, 000000
-
-

←offset
,

2 ha offsets key
, ax::::÷÷÷ "s.

•

•

offset--
•

.

:
-

-

n.hn/oSfsetn Ket
,



How lookups work
* Client downloads description of H .
* Given string s

,
client locally computesbucket index b as

b ← Hls) . fbc.fi)
* Client uses one PER glory at index

b to
POINTER TABLE to fetch,

( hb , offsets) .

* Client makes a second PIR queryat index osfsetbthbls) to DATA TABLE
to fetch s Cif exists) .

Need to show
-

* How to construct hi
,
. .
. .hn

* That Drip TABLE isn't too large fan keys)

Efficiency
-

Description of H
. . . .
0( login) bits

.

1 PIR query to table of n rows , Ollgn) bits each .

* PIR guy to table of 3h rows
,
l bits each

.



I
. Constructing hi

,
. .
-

, hb

Need hb : fo, IT → [n:] such that

his distinct valves in 8,14 map to
distinct values under his

.

A random oracle has will satisfy this
property w/ probability 342 .

Probability of collision

Inst .

'h
.

Lazy approach : Given a big random oracle

H : 8,13
*
→ so, 13 ?

Construct a small random oracle as

hbtx) H(salts, x ) (mod ng) .
Is -40,13? (Half of salts will work.)for Sd f

! There are soreDanger
subtleties here

,
but this general

strategy will work -

(Non - lazy approach has pairwise independent hashing)



I . Showing that data table isn't too big .
Let It :{oil's Cn] be a random fn .

Then let C be number of pairs 4¥11? such

that hck) -_ hlk
')
.

Elect. I :H÷ls% .

By Markov 's inequality .
Prk > n ]s 7- ( 'a) E'la .

So
, if we look at trichomes of H

(on average) , we will find one 4 Csn .
[

Salted random
oracle .

We want to bound

⇐ bi = i. bi t i. b:(bi - l )
= n +2 . ?E( bi ) .
= nt 2 . C

.

⇐ 3h
-



Batching PIR (see Ishaiiknshilevitz,
-

Ostrovsky, Sahai 2004)

All PIR schemes we've seen so far have
Sun) server - site computational cost

.

Idea : If client wants to make q queries,
all at once to the same DB

.

T

server can answer at queries
'

at

computational cost In.

→ Example : DNS lookups,
F.appiy phone #s to public keys

strategy : Again , use hashing .



Client ( is . . . , iqc.cn)) Server KEG, 13h)
1

.

Client and server choose a hash fn
H : Cu] → Cq] . (Again, random oracle)
↳Maps each data item x; into bucket Hf)

.

↳ of buckets
.

Ttm

2
. EE

. . --
17

Bucket 1 Bucket 2 Bucket q .

Standard balls - in- bins analysis shows
that v. p sa

- A
,
at most Alogq of the

client's desired indices fall into any one bucket.

( Not too many collisions .)
3

.
Client & saver view each bucket as
a separate database .

Client makes Hogg PER queriesto each bucket .

⇒ Enough to recover (Xi
,
. . . . Xig ) .



Efficiency
- If original PIR scheme has
seven time th)

,
g- query batch

scheme has

I.
'
Cn, g) = Along q) - q

- tht
-w-
# queries # bucket

,

Ime per query

TIGHT Algar) n. per
bucket

in

within a Hogg factor of
optimal .

- Original PIR scheme has Comm Un)

Cdn,g) = He.gg/.qClMg)
IS Qntrn ⇒ Gland .

More complicated constructions can improve on

the blogq factor.


