6.893: Cryptographic Techniques for Protecting Privacy

Fall 2020

Problem Set 1

Due: September 18, 2020 at 5pm, Boston time via Gradescope.

Instructions: You must typeset your solution in LaTeX using the provided template:

https://6893.csail.mit.edu/homework.tex

Submission Instructions: You must submit your problem set via Gradescope. Please use course code **MGWNYV** to sign up. The solution to each problem must begin on a new page.

Bugs: I make mistakes! If it looks like there might be a mistake in the statement of a problem, please ask a clarifying question on Piazza.

Useful background information for this problem set include: the Union Bound, Markov's inequality, the Chernoff Bound, the Birthday Bound, and averaging arguments. Appendix A of Arora and Barak is one useful reference for some of these topics.

Problem 1: True/False [5 points].

- (a) Which of the following are true in a world where P = NP?
 - i Secure PRFs exist in the standard model.
 - ii Secure PRFs exist in the random-oracle model.
 - iii The one-time-pad cipher is secure.
- (b) If there exists a PRG with 1-bit stretch, there exists a PRG with n^{800} -bit stretch (where *n* is the length of the PRG seed).
- (c) Let $P: \mathcal{K} \times \mathcal{X} \to \mathcal{X}$ be a pseudorandom permutation. Then:
 - i $f_{k=0}(x) := P(0, x)$ is (always) a one-way function.
 - ii $f_{k=0}(x) := P(0, x)$ is (always) a one-way permutation.
 - iii $f_{x=0}(k) := P(k, 0)$ is (always) a one-way function.
 - iv $f_{x=0}(k) := P(k, 0)$ is (always) a one-way permutation.

Problem 2: Key Leakage in PRFs [5 points]. Let *F* be a secure PRF defined over $(\mathcal{K}, \mathcal{X}, \mathcal{Y})$, where $\mathcal{K} = \mathcal{X} = \mathcal{Y} = \{0, 1\}^n$. Let $\mathcal{K}_1 = \{0, 1\}^{n+1}$. Construct a new PRF F_1 , defined over $(\mathcal{K}_1, \mathcal{X}, \mathcal{Y})$, with the following property: the PRF F_1 is secure; however, if the adversary learns the last bit of the key then the PRF is no longer secure. You must show

- that your PRF is secure and
- an efficient attack on your PRF given the last bit of the PRF key.

This shows that leaking even a *single* bit of the secret key can destroy the PRF security property. [**Hint:** Try changing the value of *F* at a single point.]

Problem 3: From a OWP to a PRG [10 points]. Let $f: \{0,1\}^n \to \{0,1\}^n$ be a one-way permutation. Then consider the function $G: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^{2n+1}$, defined as

$$G(x,r) := (f(x) \parallel r \parallel \langle x,r \rangle).$$

Here, $\langle x, r \rangle$ is the inner-product of *x* and *r* modulo 2.

Notice that *G* is length-increasing, since it maps 2n bits to 2n + 1 bits. We claim that if *f* is a one-way permutation then *G* is a pseudo-random generator. In this problem, you will prove that there is no efficient algorithm that takes as input the first 2n bits of *G*'s output and predicts the last bit of *G*'s output with high probability.

- (a) As a warm-up, say that there exists an efficient algorithm \mathcal{A} such that $\Pr_{x,r}[\mathcal{A}(f(x), r) = \langle x, r \rangle] = 1$. Construct an efficient algorithm \mathcal{B} , which calls \mathcal{A} as a subroutine, that perfectly inverts f. That is, $\Pr_x[\mathcal{B}(f(x)) = x] = 1$.
- (b) Next, we say that x ∈ {0,1}ⁿ is *good* for A if Pr_r[A(f(x), r) = ⟨x, r⟩] ≥ 3/4 + ε for some positive constant ε, where the probability is taken *only* over r ^R {0,1}ⁿ. Construct an efficient algorithm B that takes as input f(x) for a good x ∈ {0,1}ⁿ and outputs x with probability at least 1/2, by calling A at most O(n · log n) times.
- (c) Assume now that \mathcal{A} satisfies $\Pr_{x,r}[\mathcal{A}(f(x), r) = \langle x, r \rangle] \ge 3/4 + \epsilon$, for some constant $\epsilon > 0$, where the probability is taken over the independent and uniform random choice of *x* and *r* from $\{0, 1\}^n$. Show that *x* chosen uniformly from $\{0, 1\}^n$ is *good* (in the sense of Part (b)) with some constant probability.

What you have shown is that if there is an algorithm \mathcal{A} that predicts (with probability at least $3/4 + \epsilon$, for $\epsilon > 0$) the last bit of *G*'s output given the first 2n bits of *G*'s output, we can construct an algorithm \mathcal{A} that breaks the one-wayness of *f*.

Problem 4: Random functions [10 points]. Let $H: \{0,1\}^n \rightarrow \{0,1\}^n$ be a hash function that we model as a random oracle.

It is common to store user passwords in "hashed" form. That is, rather than storing a password $p \in \{0, 1\}^n$, a server stores the hash h = H(p). When a client wants to authenticate to the server, the client sends its password p' to the server. The server computes h' = H(p') and allows the client to log in if h = h'.

- (a) Fix *C* distinct passwords $p_1, ..., p_C \in \{0, 1\}^n$. What is the probability—over the random choice of *H*—that some two passwords hash to the same value? This probability will be a function of *C* and *n*. You may give an upper bound on the probability of a collision, as long as your bound is non-trivial.
- (b) One standard technique for increasing the cost of offline password-guessing attacks is to hash the password many times in sequence. (NIST's PBKDF2 standard does this.) Say now that we have T random functions H_1, \ldots, H_T : $\{0, 1\}^n \rightarrow \{0, 1\}^n$ and define:

$$H_{\text{big}}(x) := H_T(\cdots H_2(H_1(x))\cdots).$$

Again, fix *C* distinct passwords and give an upper bound on the probability—now over the random choice of H_1, \ldots, H_T —that some two passwords hash to the same value. This probability will be a function of *C*, *T*, and *n*.

(c) To simplify your implementation, you decide to iterate the *same* hash function T times. So now, you hash the passwords using $H^{(T)}$ where

$$H^{(T)}(x) := \underbrace{H(\cdots H(H(x))\cdots)}_{T \text{ times}}.$$

Again, fix C distinct passwords and bound the probability—now just over the random choice of H—that some two passwords hash to the same value.

- (d) Modern processors have dedicated hardware instructions for computing the AES block cipher quickly. To improve the number of hash-iterations per second, your friend decides to implement *H* in the following way:
 - For each user *i*, choose a random AES key k_i .
 - Hash the password using $H_{AES_i}(x)$, where

$$H_{\text{AES}_i}(x) := \underbrace{E(k_i, \cdots E(k_i, (E(k_i, x)) \cdots))}_{T \text{ times}}$$

and $E(\cdot, \cdot)$ is the AES block cipher.

• Store the pair $(k_i, H_{AES_i}(x))$ in the server's password database.

Say that T = poly(n). If an attacker steals the password database, how many invocations of AES, as a function of T and n, are required to recover a single user's password? (Here, make the unrealistic assumption that the user's password is a random n-bit string.)

(e) **Extra credit** [**3pts**] – **Optional, but recommended!** You use the hash function from Part (c) with $T = 2^{2n/3}$. Let $h \in \{0,1\}^n$ be the hash of a random *n*-bit password under $H^{(T)}$. Show that an attacker can find a password $p^* \in \{0,1\}^n$ such that $h = H^{(T)}(p^*)$ by invoking *H* at most $2^{n/2} \cdot \text{poly}(n)$ times. That is, even though we iterated *H* for $2^{2n/3}$ iterations, there is a password-cracking attack that runs in time $\approx 2^{n/2} \ll 2^{2n/3}$.

Does the same attack work if you use H_{big} from Part (b) with $T = 2^{2n/3}$?

Problem 5: Feedback [1 points].

- (a) Roughly how many hours did you spend on this problem set?
- (b) What was your favorite problem on this problem set? In one sentence: why?
- (c) What was your least favorite problem on this problem set? In one sentence: why?
- (d) **[Optional]** If you have any other feedback on this problem set or on the course, please write it here or submit it using the anonymous feedback form.