Problem Set 1

Due: September 18, 2020 at 5pm, Boston time via Gradescope.

Instructions: You must typeset your solution in LaTeX using the provided template:

```
https://6893.csail.mit.edu/homework.tex
```

Submission Instructions: You must submit your problem set via Gradescope. Please use course code MGWNYV to sign up. The solution to each problem must begin on a new page.

Bugs: I make mistakes! If it looks like there might be a mistake in the statement of a problem, please ask a clarifying question on Piazza.

Useful background information for this problem set include: the Union Bound, Markov's inequality, the Chernoff Bound, the Birthday Bound, and averaging arguments. Appendix A of Arora and Barak is one useful reference for some of these topics.

Problem 1: True/False [5 points].

(a) Which of the following are true in a world where $\mathrm{P}=\mathrm{NP}$?
i Secure PRFs exist in the standard model.
ii Secure PRFs exist in the random-oracle model.
iii The one-time-pad cipher is secure.
(b) If there exists a PRG with 1-bit stretch, there exists a PRG with n^{800}-bit stretch (where n is the length of the PRG seed).
(c) Let $P: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{X}$ be a pseudorandom permutation. Then:
i $f_{k=0}(x):=P(0, x)$ is (always) a one-way function.
ii $f_{k=0}(x):=P(0, x)$ is (always) a one-way permutation.
iii $f_{x=0}(k):=P(k, 0)$ is (always) a one-way function.
iv $f_{x=0}(k):=P(k, 0)$ is (always) a one-way permutation.

Problem 2: Key Leakage in PRFs [5 points]. Let F be a secure PRF defined over $(\mathcal{K}, \mathcal{X}, \mathcal{Y})$, where $\mathcal{K}=$ $\mathcal{X}=\mathcal{Y}=\{0,1\}^{n}$. Let $\mathcal{K}_{1}=\{0,1\}^{n+1}$. Construct a new PRF F_{1}, defined over $\left(\mathcal{K}_{1}, \mathcal{X}, \mathcal{Y}\right)$, with the following property: the PRF F_{1} is secure; however, if the adversary learns the last bit of the key then the PRF is no longer secure. You must show

- that your PRF is secure and
- an efficient attack on your PRF given the last bit of the PRF key.

This shows that leaking even a single bit of the secret key can destroy the PRF security property.
[Hint: Try changing the value of F at a single point.]

Problem 3: From a OWP to a PRG [10 points]. Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a one-way permutation. Then consider the function $G:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{2 n+1}$, defined as

$$
G(x, r):=(f(x)\|r\|\langle x, r\rangle) .
$$

Here, $\langle x, r\rangle$ is the inner-product of x and r modulo 2 .
Notice that G is length-increasing, since it maps $2 n$ bits to $2 n+1$ bits. We claim that if f is a one-way permutation then G is a pseudo-random generator. In this problem, you will prove that there is no efficient algorithm that takes as input the first $2 n$ bits of G's output and predicts the last bit of G's output with high probability.
(a) As a warm-up, say that there exists an efficient algorithm \mathcal{A} such that $\operatorname{Pr}_{x, r}[\mathcal{A}(f(x), r)=\langle x, r\rangle]=1$. Construct an efficient algorithm \mathcal{B}, which calls \mathcal{A} as a subroutine, that perfectly inverts f. That is, $\operatorname{Pr}_{x}[\mathcal{B}(f(x))=x]=1$.
(b) Next, we say that $x \in\{0,1\}^{n}$ is good for \mathcal{A} if $\operatorname{Pr}_{r}[\mathcal{A}(f(x), r)=\langle x, r\rangle] \geq 3 / 4+\epsilon$ for some positive constant ϵ, where the probability is taken only over $r \stackrel{\mathbb{R}}{ }\{0,1\}^{n}$. Construct an efficient algorithm \mathcal{B} that takes as input $f(x)$ for a good $x \in\{0,1\}^{n}$ and outputs x with probability at least $1 / 2$, by calling \mathcal{A} at most $O(n \cdot \log n)$ times.
(c) Assume now that \mathcal{A} satisfies $\operatorname{Pr}_{x, r}[\mathcal{A}(f(x), r)=\langle x, r\rangle] \geq 3 / 4+\epsilon$, for some constant $\epsilon>0$, where the probability is taken over the independent and uniform random choice of x and r from $\{0,1\}^{n}$. Show that x chosen uniformly from $\{0,1\}^{n}$ is good (in the sense of Part (b)) with some constant probability.

What you have shown is that if there is an algorithm \mathcal{A} that predicts (with probability at least $3 / 4+\epsilon$, for $\varepsilon>0$) the last bit of G 's output given the first $2 n$ bits of G 's output, we can construct an algorithm \mathcal{A} that breaks the one-wayness of f.

Problem 4: Random functions [10 points]. Let $H:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a hash function that we model as a random oracle.

It is common to store user passwords in "hashed" form. That is, rather than storing a password $p \in\{0,1\}^{n}$, a server stores the hash $h=H(p)$. When a client wants to authenticate to the server, the client sends its password p^{\prime} to the server. The server computes $h^{\prime}=H\left(p^{\prime}\right)$ and allows the client to \log in if $h=h^{\prime}$.
(a) Fix C distinct passwords $p_{1}, \ldots, p_{C} \in\{0,1\}^{n}$. What is the probability-over the random choice of H-that some two passwords hash to the same value? This probability will be a function of C and n. You may give an upper bound on the probability of a collision, as long as your bound is non-trivial.
(b) One standard technique for increasing the cost of offline password-guessing attacks is to hash the password many times in sequence. (NIST's PBKDF2 standard does this.) Say now that we have T random functions $H_{1}, \ldots, H_{T}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ and define:

$$
H_{\mathrm{big}}(x):=H_{T}\left(\cdots H_{2}\left(H_{1}(x)\right) \cdots\right) .
$$

Again, fix C distinct passwords and give an upper bound on the probability-now over the random choice of H_{1}, \ldots, H_{T}-that some two passwords hash to the same value. This probability will be a function of C, T, and n.
(c) To simplify your implementation, you decide to iterate the same hash function T times. So now, you hash the passwords using $H^{(T)}$ where

$$
H^{(T)}(x):=\underbrace{H(\cdots H(H(x)) \cdots)}_{T \text { times }}
$$

Again, fix C distinct passwords and bound the probability—now just over the random choice of H-that some two passwords hash to the same value.
(d) Modern processors have dedicated hardware instructions for computing the AES block cipher quickly. To improve the number of hash-iterations per second, your friend decides to implement H in the following way:

- For each user i, choose a random AES key k_{i}.
- Hash the password using $H_{\mathrm{AES}_{i}}(x)$, where

$$
H_{\mathrm{AES}_{i}}(x):=\underbrace{E\left(k_{i}, \cdots E\left(k_{i},\left(E\left(k_{i}, x\right)\right) \cdots\right)\right.}_{T \text { times }}
$$

and $E(\cdot, \cdot)$ is the AES block cipher.

- Store the pair $\left(k_{i}, H_{\mathrm{AES}_{i}}(x)\right)$ in the server's password database.

Say that $T=\operatorname{poly}(n)$. If an attacker steals the password database, how many invocations of AES, as a function of T and n, are required to recover a single user's password? (Here, make the unrealistic assumption that the user's password is a random n-bit string.)
(e) Extra credit [3pts] - Optional, but recommended! You use the hash function from Part (c) with $T=2^{2 n / 3}$. Let $h \in\{0,1\}^{n}$ be the hash of a random n-bit password under $H^{(T)}$. Show that an attacker can find a password $p^{*} \in\{0,1\}^{n}$ such that $h=H^{(T)}\left(p^{*}\right)$ by invoking H at most $2^{n / 2} \cdot \operatorname{poly}(n)$ times. That is, even though we iterated H for $2^{2 n / 3}$ iterations, there is a password-cracking attack that runs in time $\approx 2^{n / 2} \ll 2^{2 n / 3}$.
Does the same attack work if you use $H_{\text {big }}$ from Part (b) with $T=2^{2 n / 3}$?

Problem 5: Feedback [1 points].

(a) Roughly how many hours did you spend on this problem set?
(b) What was your favorite problem on this problem set? In one sentence: why?
(c) What was your least favorite problem on this problem set? In one sentence: why?
(d) [Optional] If you have any other feedback on this problem set or on the course, please write it here or submit it using the anonymous feedback form.

