
6.893: Cryptographic Techniques for Protecting Privacy Fall 2020

Problem Set 3

Due: October 16, 2020 at 5pm, Boston time via Gradescope.

Instructions: You must typeset your solution in LaTeX using the provided template:

https://6893.csail.mit.edu/homework.tex

Submission Instructions: You must submit your problem set via Gradescope. Please use course code
MGWNYV to sign up. For ease of grading, please begin each part of each question on a new page.

Bugs: I make mistakes! If it looks like there might be a mistake in the statement of a problem, please ask a
clarifying question on Piazza.

Problem 1: True/False [5 points].

(a) If P=NP, then two-party distributed point functions on n-bit domains with keys of size O(n) exist.

(b) If P=NP, then two-party distributed point functions on n-bit domains with keys of size O(2n) exist.

(c) If secure PRPs exist, then two-party distributed point functions on n-bit domains with keys of size
O(n) exist.

(d) In the offline/online PIR scheme we covered in class, the servers need to store the database in
preprocessed/encoded form.

(e) In the offline/online PIR scheme we covered in class, the left and right servers have the same running
time.

Problem 2: Private Information Retrieval from Fully Homomorphic Encryption [10 points]. A fully
homomorphic encryption (FHE) scheme is an encryption scheme (E ,D) that—speaking very informally—
allows computing arbitrary functions over encrypted data. That is, for any boolean function f : {0,1}`→
{0,1}, there is an operation Eval f such that if we sample an encryption key k from the keyspace of the FHE
scheme then for any messages m1, . . . ,m` ∈ {0,1}, if

ct1 ← E(k,m1), · · · ,ct`← E(k,m`),

then

D
(
k,Eval f (ct1, . . . ,ct`)

)= f (m1, . . . ,m`).

(Formally defining FHE takes quite a bit of work. For example, to make the definition non-trivial, we need
that the ciphertext size and decryption time are independent of the complexity of f . But I think that this
informal definition should be enough for this problem, but please ask on Piazza if something seems off
here.)

https://6893.csail.mit.edu/homework.tex
https://gradescope.com/


(a) Show how to use an FHE scheme to construct a single-server one-round PIR scheme in which the
client uploads O(logn) ciphertexts to the server, for an n-bit database, and the server responds with
a single ciphertext to the client.

(b) Say that the database contains n pairs (namei , salaryi ). The client holds a string σ ∈ {0,1}` and wants
to learn the sum of the salaries of the people whose names begin with the string σ. Use FHE to
construct a single-server one-round PIR scheme in which the client uploads ` FHE ciphertexts and
the server responds with O(log(n ·SALARY_MAX)) ciphertexts.

(c) Suppose that you have a somewhat homomorphic encryption scheme that supports computing
boolean circuits consisting of only OR and AND gates of AND-depth d +1 (i.e., there are at most d +1
AND gates between any input and the output wire) for some constant d ≥ 2. Construct a single-server
one-round PIR scheme in which the client sends O(n1/d ) ciphertexts to the server and the server
replies with a single ciphertext. Note that the constant in the big-O can depend on d . (It is actually
sufficient to have an FHE scheme that supports circuits of AND-depth O(logd) but it is not required
in this problem.)

Problem 3: More PIR servers ⇒ Less communication [15 points]. On the last problem set, you con-
structed a two-server PIR scheme with communication complexity O(n1/3). In this problem, you will
construct a O(logn)-server PIR scheme with much much lower communication complexity polylog(n).
The catch is that if an attacker can compromise any two servers, out of the O(logn) total servers, it can
break client privacy. But, the stronger non-collusion assumption on the servers gives a much more
communication-efficient information-theoretic PIR scheme.

For this problem let F be a finite field of size ≈ n. If you are not familiar with finite fields, you can think
of F as Zp for a prime p ≈ n. For this problem, all logarithms are base-two and n is a power of two.

The construction works in three steps:

1. First, we will construct a multivariate polynomial fD that “encodes” the bits of the database D .

2. Next, we will show that it is possible to recover the value of this polynomial at any point by evaluating
the polynomial at O(logn) points. Furthermore, each of these evaluation points will look random
on its own (though the evaluation points will be correlated).

3. Finally, we will construct the PIR protocol.

(a) Show that for any bit b ∈ {0,1} ⊂ F, there is a degree-one polynomial fb ∈ F[x] (i.e., a polynomial in
indeterminate x whose coefficients are in F) such that

• fb(b) = 1 and

• fb(1−b) = 0.

Notice that fb(·) is defined for all elements in the field F, but that we don’t care about its value on any
points except 0 and 1.

(b) Show that for any string b = b1b2 · · ·bm ∈ {0,1}m ⊂ Fm , there is a polynomial gb ∈ F[x1, . . . , xm] such
that

• gb(b1, . . . ,bm) = 1 and



• gb(b′
1, . . . ,b′

m) = 0, for any string b′ = b′
1 · · ·b′

m ∈ {0,1}m ⊂ Fm where b′ 6= b.

Furthermore, gb is multilinear: if you fix the values of m −1 variables, the polynomial is a linear
function of the last variable. (In particular, gb(x1, x2, . . . xm) has no terms like x2

1 x2.)

Hint: Use your solution from Part (a) m times.

(c) Show that for any n-bit database D = D1D2 · · ·Dn ∈ {0,1}n , there is a multilinear polynomial fD ∈
F[x1, . . . , xlogn] such that for all i ∈ [n], if i1i2 · · · im ∈ {0,1}logn is the bit decomposition of i , it holds
that fD (i1, . . . , im) = Di ∈ {0,1} ⊂ F.

(d) Fix any point β= (i1, . . . , ilogn) ∈ {0,1}logn ⊂ Flogn . We want to show that it is possible to interpolate
the value fD (β) ∈ F by evaluating fD at O(logn) other points. (This is the magical part.)

Choose α ←R Flogn . Now, define the univariate polynomial h ∈ Flogn[t ] as h(t) := αt +β ∈ Flogn .
The notation h ∈ Flogn[t ] means that h is a polynomial in indeterminate t whose coefficients are
logn-tuples of elements of F. So, the value h(7) is a vector of logn elements of F.

Observe that h : F→ Flogn and fD : Flogn → F. So ( fD ◦h) : F→ F is a univariate polynomial that
maps F→ F. Furthermore, since h has degree one and fD is linear in each of its logn variables, the
composition ( fD ◦h) is a univariate polynomial in indeterminate t of degree at most logn.

Explain why having the values fD (h(1)), fD (h(2), . . . , fD (h(1+ logn)) is enough to recover the value
fD (h(0)) = fD (β). Notice that fD (β) = Di1···in , which is the i th bit of the database.

(e) Use the result of Part (d) to construct a PIR protocol with O(logn) servers that provides security
provided that no two servers collude. The client should send O(logn) field elements to each server
and should receive one field element in return. The total communication complexity of this protocol
will be polylog(n).

Problem 4: An anonymous feedback system [15 points]. I always appreciate it when students submit
anonymous feedback via the online form. However, I would really like a way to give students extra credit
for sending in feedback, without learning which student submitted which piece of feedback. In this
problem, we will explore one possible way to do this.

The system works in two phases: a feedback phase and a grading phase. In both phases, the student
interacts with the 6.893 server, which holds a secret key sk for a PRF F (·, ·).

• Feedback phase. The student connects to the 6.893 server (e.g., using Tor) and sends in their
feedback. The student and server then run a protocol. At the end of the protocol, the student
holds a token tuser = F (sk,user), where user is the student’s Kerberos identity. Over the course of the
protocol, the server “learns nothing” about the student’s identity.

• Grading phase. When the student submits her problem set to the 6.893, she includes her token
tuser. I will check that the token is “valid:” that tuser = F (sk,user′), where user′ is the username of
the student who submitted the problem set. If this check passes, I will assign the student some
extra-credit points.

Let G = {g , g 2, . . . , } be a group of prime order p, where G is the sort of group that we use for Diffie-
Hellman key exchange. Let H : {0,1}∗ →G be a hash function, which we model as a random oracle.

https://mit.co1.qualtrics.com/jfe/form/SV_bPB00k7DeQCoeQ5


(a) For this sort of system to be useful, it should be correct, in that an honest server interacting with an
honest student will grant the student some extra-credit points at the end of this interaction. Please
explain two other properties that this type of feedback system should satisfy. Your definitions can be
informal.

(b) Say that instead of sending F (sk,user) to the student in the feedback phase, the feedback server sent
(r, tr = F (sk,r )), for some per-student random value r sampled from the domain of the PRF. In the
grading phase for this alternate system, the student submits (r, tr ) and I check only that tr = F (sk,r ).
Show that, if we used this scheme, a pair of colluding students could cause a grading headache for
the instructor. (In particular, the scheme will not satisfy one of your properties from part (a).)

(c) For the groupG defined earlier in this problem, we can define a PRF FG with keyspaceZp and domain
{0,1}∗ as FG(sk, x) := H(x)sk ∈G. Give a two-message protocol that the student and server can run in
the feedback phase such that:

• initially the server holds a PRF secret key sk and student holds a string user ∈ {0,1}∗, and

• at the end of the protocol, the student holds FG(sk,user) and the server “learns nothing” about
the client’s string user. In particular, the view of the server in the protocol interaction should be
independent of the client’s string user.

(d) A different construction uses a PRF F ′
G

with keyspace Zp and domain G, defined as F ′
G

:= xsk ∈G. The
only difference between FG and F ′

G
is that the latter construction does not use the hash function H .

Say that each student’s Kerberos username is an element of the group G. Show that if we instantiate
the anonymous-feedback protocol with F ′

G
instead of FG, a student use one valid token for student

user and convert it into a valid token for some other student user′ 6= user. (Even if the student does
not get to choose the student ID user′ for while the other token is valid, this is still problematic.)

(e) Extra credit [1 point]: In some groups G, the decision Diffie-Hellman problem is easy, while the
discrete-log problem appears hard. (The group Z∗

p , for a large prime p, is one such group.) Show that
the scheme above is insecure in such a group. In particular, the scheme should not satisfy one of the
properties from part (a).

(f) Extra credit [5 points]: Implement the client for this protocol (as a command-line utility) and the
server (as a web app). If someone makes a nice implementation, I will use it to give extra-credit
points for anonymous feedback for the rest of the semester.

Problem 5: Extra Credit: Current events [2 points]. Post an news article (from the last 14 days) on
Piazza relating to privacy and/or cryptography and/or computer security. Put the number of the Piazza
post as your answer here.

Problem 6: Extra Credit: Offline/Online PIR with Perfect Correctness [4 points]. In class we saw an
offline/online PIR scheme with O(

p
n) communication and online time. The basic protocol we discussed

in class fails (in correctness) with probability O(1/
p

n). One way to fix this is to repeat the protocol λ

times in parallel to drive the failure probability down to O(1/
p

nλ) =O(2−λ). Show that you can modify
the basic protocol to achieve perfect correctness (i.e., failure probability zero) without paying a λ factor in
communication or online time.



Problem 7: Extra Credit: k −1-out-of-k Offline/Online PIR [6 points]. Construct an offline/online PIR
scheme with o(n) communication and online time such that for any k ≥ 2, (a) the client communicates
with k database replicas and (b) client privacy holds against an adversary that controls at most k −1 of the
replicas.

Problem 8: Extra Credit (Research Problem): Two-server PIR [100 points]. Construct a two-server PIR
protocol with information-theoretic security in which the total communication, on a database of n bits is
polylog(n) bits.

Problem 9: Feedback [1 points].

(a) Roughly how many hours did you spend on this problem set?

(b) What was your favorite problem on this problem set? In one sentence: why?

(c) What was your least favorite problem on this problem set? In one sentence: why?

(d) [Optional] If you have any other feedback on this problem set or on the course, please write it here
or submit it using the anonymous feedback form.
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