
6.893: Cryptographic Techniques for Protecting Privacy Fall 2020

Problem Set 5

Due: November 13, 2020 at 5pm, Boston time via Gradescope.

Instructions: You must typeset your solution in LaTeX using the provided template:

https://6893.csail.mit.edu/homework.tex

Submission Instructions: You must submit your problem set via Gradescope. Please use course code
MGWNYV to sign up. For ease of grading, please begin each part of each question on a new page.

Bugs: I make mistakes! If it looks like there might be a mistake in the statement of a problem, please ask a
clarifying question on Piazza.

Problem 1: Extending Oblivious Transfers [20 points]. As we saw on the last problem set, oblivious
transfer (OT) is an important building block of many secure MPC protocols. Because implementing OT
requires public-key primitives, implementing a large number of OTs can be very expensive in practice. In
this problem, you will see how to realize n = poly(λ) instances of 1-out-of-2 OTs on `-bit strings (where
`= poly(λ)) using just λ instances of 1-out-of-2 OTs on λ-bit strings. Here, λ ∈N is a security parameter.
This means that we can essentially obtain an arbitrary polynomial number of OTs using a fixed number of
base OTs.

(a) First, we show how to realize n instances of 1-out-of-2 OTs on `-bit strings using λ instances of
1-out-of-2 OTs on n-bit strings (we refer to these as the base OTs). Consider the following protocol:

• Let r ∈ {0,1}n be the receiver’s choice bits for the n OT instances, let
(
m(1)

0 ,m(1)
1

)
, . . . ,

(
m(n)

0 ,m(n)
1

)
be

the sender’s messages for the n OT instances.

• The receiver begins by choosing a matrix M ←R {0,1}n×λ. The sender chooses a random string
s ←R {0,1}λ.

• The sender and the receiver now perform λ instances of an 1-out-of-2 OT on n-bit strings, but with
their roles swapped (namely, the sender plays the role of the receiver in the base OTs, and vice
versa). In the i th base OT (where i ∈ [λ]), the sender provides si as its choice bit and the receiver
provides (Mi ,Mi ⊕ r ) as its two messages, where Mi ∈ {0,1}n denotes the i th column of M.

• Let T ∈ {0,1}n×λ be the matrix the sender receives from these base OTs (where the i th column of T
is the column it received from the i th base OT). By construction, either Ti = Mi or Ti = Mi ⊕ r .

For j ∈ [n], let M( j ) denote the j th row of M and let T( j ) denote the j th row of T. Write down an
expression for M( j ) in terms of T( j ) and s when r j = 0 and when r j = 1.

(b) Let H : [n]× {0,1}λ→ {0,1}` be a hash function (modeled as a random oracle). Suppose the sender
encrypts each pair of messages

(
m( j )

0 ,m( j )
1

)
by computing

ct
( j )
0 ← m( j )

0 ⊕H
(

j ,k( j )
0

)
and ct

( j )
1 ← m( j )

1 ⊕H
(

j ,k( j )
1

)
,

where k( j )
0 ,k( j )

1 ∈ {0,1}λ. The sender sends each pair of encrypted messages to the receiver. Write

down expressions for k( j )
0 ,k( j )

1 that would enable the receiver to learn m( j )
r j

. [Hint: Recall that the
receiver chooses the matrix M and then use the result from Part (a).]

https://6893.csail.mit.edu/homework.tex
https://gradescope.com/


(c) Give a brief explanation of why the receiver learns nothing about the other message m( j )
1−r j

. [Hint:

Use the fact that H is modeled as a random oracle.]

(d) Give a brief explanation of what goes wrong if we implement the hash function H( j ,k) as F (k, j ),
where F : {0,1}λ× [n] → {0,1}` is a secure PRF.

(e) Describe how you would modify the above protocol so that the base OTs are performed over λ-
bit strings rather than n = poly(λ)-bit strings. [Hint: You will need to introduce a computational
assumption.]

Problem 2: Constructing Linear PCPs [20 points]. Let F be a finite field. (As usual, think of F as the
integers modulo some prime p.) Let C : Fn → F be an arithmetic circuit. We say that a pair of algorithms
(P,V ) is a fully linear probabilistically checkable proof (PCP) for C if it satisfies the following two properties:

• Completeness. For all x ∈ Fn such that C (x) = 0, if P (x) →π ∈ Fm , then Pr[V 〈·,x‖π〉() = “accept”] = 1.

• Soundness. For all x ∈ Fn such that C (x) 6= 0, for all proofs π ∈ Fm , Pr[V 〈·,x‖π〉() = “accept”] ≤
O(|C |)/ |F|.

Recall that the notation V 〈·,x‖π〉 means that the verifier V may issue queries of the form q ∈ Fn+m to its
oracle, to which it receives answers a = 〈q, x‖π〉 ∈ F. You may assume that |F| is much larger than the
number of gates in the circuit C .

(a) Show that there is a fully linear PCP for C in which (i) the verifier V makes n queries and (ii) the proof
length m = 0.

(b) Assume that the circuit C consists only of affine gates—that is, only addition gates and multiplication-
by-constant gates. Show that there is a fully linear PCP for C in which (i) the verifier V makes a single
query and (ii) the proof length m = 0.

(c) Assume that the circuit C : Fn → F contains n100 affine gates and
p

n multiplication gates. Show that
there is a fully linear PCP for C in which (i) the verifier V makes O(

p
n) queries and (ii) the proof

length m = 0.

(d) Let Cmul : F3g → F be a circuit that takes as input 3g values (a1, · · · , ag ,b1, · · ·bg ,c1, · · · ,cg ) ∈ F3g and
outputs 0 iff for all i ∈ [g ], ai ·bi = ci ∈ F. For this part, assume that there is a fully linear PCP for Cmul

with proof size O(g ) and query complexity O(1),

Let C be an arbitrary circuit with g multiplication gates. Show there is a fully linear PCP for C with
proof size O(g ) and query complexity O(1).

(e) Now that you have solved Part (d), you know that constructing a linear PCP for Cmul with proof size
O(|Cmul|) and constant query complexity is sufficient for constructing a linear PCP for general circuits
with proof size O(|C |) and constant query complexity. This latter type of linear PCP is the one we
used in class to construct SNARKs and zero-knowledge proofs on secret-shared data.

In the following, the notation A(z) ∈ F[z] indicates that A(·) is a polynomial in indeterminate z whose
coefficients lie in F.

We will now construct a linear PCP for Cmul in a few steps:



(i) Write the input to Cmul as (a1, . . . , ag ,b1, . . . ,bg ,c1, . . . ,cg ) ∈ F3g . Define A(z) ∈ F[z] to be the
polynomial of lowest degree such that for all i ∈ [g ], A(i ) = ai ∈ F. (As usual, we identify the
elements of Fwith the integers modulo some prime p and we assume that |F|À g .) Define a
polynomial B similarly: for all i ∈ [g ], B(i ) = bi . Then, define a polynomial C (z) = A(z) ·B(z).
Explain why the following holds:

Cmul(a1, · · · , ag ,b1, · · ·bg ,c1, · · · ,cg ) = 0 ⇔ for all i ∈ [g ], it holds that C (i ) = ci .

(ii) In the linear PCP for Cmul that we will construct, the linear PCP proof πmul consists of the
coefficients of the polynomials A, B , and C . How long is the proof, in terms of the number of
field elements?

(iii) The verifier is given linear oracle access to: the input (a1, . . . , ag ,b1, . . .bg ,c1, . . . ,cg ) ∈ F3g and
the coefficients of three polynomials A′,B ′,C ′. If the proof is honestly generated, then A′, B ′,
and C ′ are generated as in Part (i). If the proof is invalid (i.e., the prover is cheating), these
polynomials might have some other form.

Prove that the verifier can use a single linear query to the input and proof to confirm (with very
high probability) that A′(i ) = ai holds for all i ∈ [g ]. You should specify both the linear query
that the verifier makes and the probability that an honest verifier fails to detect when there
exists an i∗ ∈ [g ] such that A′(i∗) 6= ai∗ .

(iv) Once you have the result of Part (iii), using two more queries, the verifier can also check that
B ′(i ) = bi and C ′(i ) = ci for all i ∈ [g ]. Use the Union Bound to upper bound the probability that
an honest verifier fails to detect when any one of the three polynomials (A′,B ′,C ′) disagrees
with the inputs, in the sense of Part (iii).

(v) At this point, we have now verified the boundary conditions: that A′, B ′, and C ′ encode the
inputs to Cmul. Now we must check that these three polynomials satisfy A′ ·B ′ =C ′. Read about
the Schwartz-Zippel Lemma. Explain how the verifier can test whether A′ ·B ′ =C ′ using three
linear queries. Compute the probability that the verifier accepts even though A′ ·B ′ 6=C ′.

Discussion: Putting all of the parts together: The verifier knows that A, B , and C encode the ai s, bi s, and
ci s. Furthermore, the verifier knows that A ·B =C , which implies that ci = ai ·bi for all i ∈ [g ].

At this point, you are done! Putting all of the parts together, you have constructed a fully
linear PCP for general circuits with linear proof size and constant query complexity! Using the
compilers we saw in class, you can now construct a SNARK or a zero-knowledge proof system
on secret-shared data. This linear PCP construction is essentially the one that people use in
practice, so you have reproved a non-trivial result.

(vi) Explain what goes wrong with the above construction if we take the field size |F| ≈ g /2.

(vii) Extra credit [1 point]: Show how to reduce the query complexity to 4.

(viii) Extra credit [2 points]: Explain why this fully linear PCP does not satisfy honest-verifier zero
knowledge.

(ix) Extra credit [3 points]: Show how to reduce the proof size to g −1.

Problem 3: Coppersmith Attacks on RSA [20 points]. This problem is not strictly about the material
that we covered in class these past two weeks, but this class of attacks is so surprising that I think it’s worth
seeing here. This problem uses some basic facts about the RSA cryptosystem.



In this problem, we will explore what are known as “Coppersmith” attacks on RSA-style cryptosystems.
As you will see, these attacks are very powerful and very general. We will use the following theorem:

Theorem (Coppersmith, Howgrave-Graham, May). Let N be an integer of unknown factorization. Let
p be a divisor of N such that p ≥ Nβ for some constant 0 <β≤ 1. Let f ∈ZN [x] be a monic polynomial
of degree δ. Then there is an efficient algorithm that outputs all integers x such that

f (x) = 0 mod p and |x| ≤ Nβ2/δ.

Here |x| ≤ B indicates that x ∈ {−B , . . . ,−1,0,1, . . . ,B}.

In the statement of the theorem, when we write f ∈ZN [x], we mean that f is a polynomial in an indeter-
minate x with coefficients in ZN . A monic polynomial is one whose leading coefficient is 1.

When N = pq is an RSA modulus (where p and q are random primes of equal bit-length with p > q), the
interesting instantiations of the theorem have either β= 1/2 (i.e., we are looking for solutions modulo a
prime factor of N ) or β= 1 (i.e., we are looking for small solutions modulo N ).

For this problem, let N be an RSA modulus with gcd(φ(N ),3) = 1 and let FRSA(m) := m3 (mod N ) be the
RSA one-way function.

(a) Let n = dlog2 Ne. Show that you can factor an RSA modulus N = pq if you are given:

• the low-order n/3 bits of p,

• the high-order n/3 bits of p, or

• the high-end n/6 bits of p and the low-end n/6 bits of p.

(b) In the dark ages of cryptography, people would encrypt messages directly using FRSA. That is, they
would encrypt an arbitrary bitstring m ∈ {0,1}blog2 Nc/5 by

• setting M ← 2`+m for some integer ` to make N /2 ≤ M < N , and

• computing the ciphertext as c ← FRSA(M).

(Note that the first step corresponds to padding the message M by prepending it with a binary string
“10000 · · ·000.”)

Show that this public-key encryption scheme is very broken. In particular, give an efficient algorithm
that takes as input (N ,c) and outputs m.

(c) To avoid the problem with the padding scheme above, your friend proposes instead encrypting
the short message m ∈ {0,1}blog2 Nc/5 by setting M ← (m‖m‖m‖m‖m) ∈ {0,1}blog2 Nc and outputting
c ← FRSA(M). Show that this “fix” is still broken.

(d) The RSA Full Domain Hash signature scheme uses a hash function H : {0,1}∗ →ZN . The signature
on a message m ∈ {0,1}∗ is the value σ← F−1

RSA(H(m)) ∈ZN . The signature σ is n = dlog2 Ne bits long.
Show that the signer need only output signatures of 2n/3 bits while still

• retaining exactly the same level of security (i.e., using the same size modulus), and

• having the verifier run in polynomial time. We don’t use this optimization in practice since (1)
Schnorr signatures are so much shorter and (2) the verification time here is polynomial, but still
much larger than the normal RSA-FDH verification time. Still, it’s a cool trick to know.



Problem 4: Extra Credit: Zero-Knowledge Proofs on Distributed Data [3 points]. In class, we saw zero-
knowledge proofs on secret-shared data, in which each of two verifiers holds additive shares (x1, x2) of an
input x ∈ Fn (i.e., x = x1 +x2 ∈ Fn) and the prover convinces them that C (x) = 0.

Sketch how to construct a zero-knowledge proof on distributed data, in which each verifier holds a
piece of the input (i.e., x1, x2 ∈ Fn/2) and the prover convinces the verifiers that C (x1‖x2) = 0. Your proof
system should require the prover to send O(|C |) field elements to the verifiers, require the verifiers to
exchange O(1) field elements, and have soundness error < 1/3 (for a large enough field).

Problem 5: Extra Credit: Generic Discrete Log [6 points]. In this problem, we use the big-Õ and big-Ω̃
notations. These are just like the normal big-O and big-Ω, except that they also suppress log factors. So, a
running time of

p
q · log4 q is Õ(

p
q).

Let G= 〈g 〉 be a group of prime order q . The best algorithm for discrete log that “works in all groups G”
(there is a way to make this statement precise) runs in time Õ(

p
q). This algorithm, which is shockingly

simple, is the best known algorithm for discrete-log the standard elliptic curve groups we use in practice.
The existence of a

p
q-time discrete-log algorithm is the reason why we use groups of order q ≈ 2256 in

practice to achieve 128-bit security.

(a) You are given a discrete-log challenge h = g x ∈G. Show that by computing two tables of values: one
of the form g ri for ri ←R Zq and one of the form hs j for s j ←R Zq , you can recover the discrete log
x ∈Zq in time Õ(

p
q).

This algorithm uses space Ω̃(
p

q). A clever trick, due to Pollard, gets the space usage down to
O(polylog q).

(b) The B-bounded discrete-log problem is the problem of recovering x ∈ {0, . . . ,B}, given g x ∈G. That
is, the group G is of order q , but we sample the exponent x from a range of size B ¿ q . Modify your
algorithm of part (a) to solve the B-bounded discrete-log problem in time Õ(

p
B). (For an asymptotic

treatment, we think of the bound B = B(q) as some function of q .)

(c) [I do not know the answer to this problem.] Say that you are given the pair (g , g x2
) ∈ G2 for x ←R

{0, . . . ,B}. Is it possible to recover x in time Õ(
p

B)?

Problem 6: Feedback [1 points].

(a) Roughly how many hours did you spend on this problem set?

(b) What was your favorite problem on this problem set? In one sentence: why?

(c) What was your least favorite problem on this problem set? In one sentence: why?

(d) [Optional] If you have any other feedback on this problem set or on the course, please write it here
or submit it using the anonymous feedback form.

https://mit.co1.qualtrics.com/jfe/form/SV_bPB00k7DeQCoeQ5

	Problem 1: Extending Oblivious Transfers [20 points].
	Problem 2: Constructing Linear PCPs [20 points].
	Problem 3: Coppersmith Attacks on RSA [20 points].
	Problem 4: Extra Credit: Zero-Knowledge Proofs on Distributed Data [3 points].
	Problem 5: Extra Credit: Generic Discrete Log [6 points].
	Problem 6: Feedback [1 points].

