Lecture 2: Fundamental Primitives

MIT - 6:593 Fall 2020 Henry Corrigan-Gibbs

Agenda -Recap: Merkle puzzles & logistics Zoon - Pseudorandon Sunctions (PRFs) La est 6 regl Sus - Pseudorandon generators (PKGs) Reminder: WW I out now. Dre 9/18 0 Spn Vin Gradesupe -One-way functions -Stretch break - Relations between them Laswitching Lemma Las GGM tree Anonymons feedback Keep it coming! Also, send the your Savoute music to lister to While studying. I'll post links or Piazza.

Recap: Merkle Puzzles

~ Will start every lecture with one.

- Key exchange from hash Ens with a "quadratic gop" between horest - party cost and attacker cost. A We use Key ex protocols with "exportantial gap" (c.g. DH in suitable elliptic curve group) Shared hash fr: Shared this of $H: [rr] \rightarrow \{0, 1\}$ Bob Alia a,,..., an [n2] H(a, J,..., H(an) $b_1, \dots, b_n \in [n^2)$ Find i, sit. <t(b,), --, H(bn) $H(\alpha_i) = H(b_i)$ (ai) 6; "B:Ahday. 1. Correct: * H has no collisions U.h.p. c * A & B's hosties intersect of constant prob 2. Security: in random-oracle model

Fundamental Primitives

- Make sure that we're all on the same page Different crypto classes are different - These ideas are really useful... come up again and again. Primitives -OWF: One-way Sunction [OWP: One-way permutation] -PRG: Benderandom generator -PRF: " Sunction -PRP: " permutation Not exactly tre (Merke sigs.) Important take-avays: - These are all "symmetric-key primitives - Can construct one from another (except our) with only polynumial loss in off. security. => From a theoretical perspective assuming OWF = Assuming PRF

Pseudorandom Functions (PRFs) (Goldreich, Goldnesky, Miceli 184,...) A "efficient" keyed function that "looks like" a random function to adversaries who don't know the key F: X × X > Y What obes this mean formally? Recurring theme: importance of definitions to crypte. For an abovithm A and bit bESO,13 let Why be event that A autputs I in the following interaction. Challenger (b 650, 13) Adversaring :5 b=0: k f R b=1: f f Funs[X, Y] x E R " evaluation gueries " :56=0: y= F(K,x) b=1: y← f(x) 8, ل ف *د* {٥٫١}

Then define A's advantage in attacking PRF E as:

$PRFAdv[A, F] := |P_r[W_0] - P_r[W_1]|$

Then we say that F is a secure PRF is V efficient algorithms A, PRFAdu[A,F] < "neglisible"

-> Need to define efficient and negligible.

Efficient and Negligible Security parater efficient = poly(1) One view: (osymptotic") too smill to matter = reg(1)A fn S(A) is "neglisible" is it, intere grows faste then any fixed polynomial. e.g., 2-7, 2-Vi 1-leg 2, 2-Jests", => IS decryption of an n-bit msg takes n'oo time, still "efficient" We are used to this from standard dyorithms (complexity. Simplifies analysis
 Allows us to ignore low-level inpl details
 We care about security to efficiency for specific small choices of sec param 1 -> For this to make sense, we need to porometerize all sets and algs by 2. Theory/Proctice gop: We need PRF defined V 1 EN. But for AES cipter 1 < [128, 192, 256].

Another view efficient = < 10 ms ("concrete") too small to nother = < 2-128 + Precisely captures running times and attack success prob. for real primitives (AES 128) - Complicates analysis... more quantities to track. Sensitive to model It is worthwhile to understand and appreciate both perspectives. (The for most things in life ...) Pseudorondan permutation (PRP) a.k.a. "block apher" P: X × X → X XX 1) Permutation V Kcys K∈ X P(k, ·) is a permutation on X 2) ESS, inversion given key There is an efficient alg $P^{-1}: \mathcal{K} \times \mathcal{X} \to \mathcal{K}$ s.]. $\forall k \in \mathcal{X} \quad \forall x \in \mathcal{X} \quad P(k, P(k, x)) = x$ Security is as in PRF game, but adopted to account for these two changes. Example: AES block cipher.

Pseudorandon guentors (PRG) $c \in \{0,1\}$ $c \in \{0,1\}$ Recall: Stratch a short seed into "random - looking" output. **σ**(ω) $\left[l(\lambda) > \lambda \right]$ Again, need G to be efficient. Q: How would you defire PRGAdu? Terminology: The "stretch" of a PRG is l(1)-1. So a PRG with 1-bit stretch maps a 1-bit seed to a [1+1]-bit output. Example: AES in countermode K → E(K, "O") || E(K, "1") || E(K, "a")

One-way Functions (OWF) note the hyphen? An efficient Sn 5: X2 -> Y2 that's "hard to invert" on random imputs. Could be easy to invert at many points though. Thirk about how < to specify quantities Security: Vess algs A $\Pr\left[S(A_{s}(SG)) = S(x) : x \stackrel{R}{\leftarrow} \mathcal{V}_{A} < \operatorname{regl}(A). \right]$ Accounts for the fact that S(x) can have many inverses X = {0]}284 $f_{SHAASS}(x) := SHAASS(x)$ Examples: $\chi = \begin{cases} pairs (p, a) \\ of A-bit \\ primes \end{cases}$ ffnetor ((β,9)) := ρ.9. One-way permutation (OWF) is a OWF where $5: X \rightarrow X$ defines a permutation. Example: folog(x) := g mod p for suitable 9, p... Somalizing this is a little -> IS you throw a rack, you'll hit a conditate OWF. In contrast, we have Very few conditate OWPS.

Connections A -> B means that A exists => B exists. PRPs PRFs PRGs OWFs Linby-Ruckoff & GGM tree G.L., HITLL, ... ("Feistel network") mit grads mit predec grads Small version on Surprise 1: Can build Signatures (seems your honework like a pub-key primitive) from OldFs. So think: "pub key cryto" = key excharge and above. Surprise 2: Good wicence that cannot build collision resistant hashes from OWFS. Theory vs. Proctice: While these connections are really important for understanding the fundamental power of these primitives we typically in practice construct whatever we need (PRP, -) directly under an ad-hoc assumption Exception: Accelerated AES hardware gives a incertive to build engthing from PRPs.

Remember:

P=NP ⇒ ≠ PRGs ⇒ Nore of these J = PRGs ⇒ P≠NP Important: We mus

S ∃ PRGs ⇒ P≠NP Important: We must make assumptions (P≠NP and it seems much more) to get PRGs, since we don't even yet know whether P≠NP.

Also: ? =>] PRGs P=NP We have no idea. See Impoglazzo's Five Wilds' poper.

From PRP to PRF ("Switching Lemma") Iden A secure PRP is also a secure PRF. Let P be a PRP with domain X. Then for all eff advs & making at most Q queries to it challengen: Thm $\left| PRPAd_{v}[A,P] - PRFAd_{v}[A,P] \right| \leq \frac{Q^{2}}{|X|}$ \Rightarrow If A is efficient then Q = poly(4).

If $\chi_{1} = \{9,1\}^{\Lambda}$ (for example) $\frac{Q^{\Lambda}}{Z^{\Lambda}} = \frac{Pdy(\Lambda)}{Z^{\Lambda}} = neyl(\Lambda)$. =) ESF als cavit distinguish PRP from PRF.

When the Switching Lemma breaks down... \neq AES is a block opter with $\chi = \{0, 1\}^{128}$. * AES counter mode uses AES as a PRF to generate a pseudorandom "one-fine pod" (K,0) (5(K,1) ···· E(K,L) -Ciphertext Problem: IS may length L=2^{ct}, the switching Lemma breaks down. ("Sweet 32 attack") SDES ⇒ Security guarantees break down. =) Not only that but semantic security breaks. AND adv con even recover blocks of msg. Attack: Ask for encryption of a) random string of length 2⁷⁰ b) Os IS ct has repeated blocks => random no repeated blocks => probably all-zero string. Example -S why concrete view is useful Sor analyzing security of practical protocols.

From PRGs to PRFs ("GGM Tree") - Recall PRG G: 80,13^A > 80,13^d stretches a A-bit seed into a 2^A-bit "random-looking" output. - A PRF seems much more complicated. A keyed Sn $F: \{9,1\}^{2} \times \{0,1\}^{2} \rightarrow \{0,1\}^{2}$ Key input output=> Not obvious that can build PRF from PRG. Why discuss this? 1. General crypts literacy. 2. Idea comes up in many recent constructions ("puncturable PEFs", ...) 3. A really nice trick to know.

GGM Tree Idea: Use PRG to label cach node of a depth-1 tree with a 1-bit pseudorandom string. 50000000

Labels are defined inductionly SE = random 1 - bit String (PRF Key) For any JE (So, 1) S_{σ} , $(S_{\sigma_0} \parallel S_{\sigma_1}) \leftarrow G(S_{\sigma})$ $F(k, \sigma) := label on node S_{\sigma}$. Then S Efficient since can compute labels on any puth down to a leaf using 1 PRG invocations.

Other properties to notice

- Delegation: Can produce a PRF key k that allows evaluating F(k,x) on a inputs x with a certain prefix (e.g. "OI")

Application: Selective decryption

- Puncturing (Sahai Waters): Can produce a PLF Key that allows evaluating F(K, x) at all x ∈ {0,1}^{*} except a special point x^{*}.

Application: Advanced crypt. tools (10) also some applications to RIM

troof uses a hybrid argument. - Goldreich Thm 3.6.6.

Idea: * Replace labels at each level S tree by truly rardom labels Core level at a fine. * Argue that any adv that can distinguish can break PRG security.

free ul
free ul
free ul
labels
}

A steps can any increase alu by A: ngl(A)= reg((A) amount. Only increases ad is advantage by reg amount

Extra material on PRGs

 $G_{a} \{ 0, 1 \}^{A} \rightarrow (0, 1)^{\ell(A)}$ Formally G= {GA: A E M} G is defined VA.

Defin A PRG G={G1: AEN} is secure if for all probabilistic algs A running in time poly(1)

 $P_{r}\left[A(G(s))=1:se^{\frac{p}{2}}\left[o_{1}\right]^{n}\right]$ $-\Pr[A(r) = 1: r \in \{0, 1\}^{\mathbb{Q}(A)}] < \operatorname{negl}(A).$

("regligible" Inverse grows Faster then any Sixed polynomial. Equivalent formalization Distributions $\begin{cases} G(s): s \in \{0,1\}^{\lambda} \end{cases} \stackrel{c}{\lesssim} \qquad \begin{cases} r: r \in \{0,1\}^{\lambda} \end{cases}$ Distributions (implicity paranetorized by ZE/N) are "computationally indistinguishable?" No poly(A) - time prob oly distinguish them.

Should be a surprise that PRGs even exist. All strives in E0,13 ((A)

