
Lecture 7 : Oblivious RAM

MIT- G-893

Fall 2020

Henry Corrigan- Gibbs

Plan
-

÷÷÷÷÷÷÷÷÷:÷÷:*:
Oblivious RAM : Def 'm

* OH Todaystretch Break
"

Square - root construction
"

* look for Piazza poll

Recap : Dpf from PRG

Important things to remember

1
.

Dpf = succinct secret sharing of
a (possibly exponentially long)
vector of all zeros w/ a

single 1 .

2
. Simple t clever construction from PRC,
in two party setting .

Key size 011in) on sec pa- am I ,
vector length 2

"

3
. Many applications : PIR

, private statistics
,

MPC
, . - - -

Motivation
Hardware enclave

t.

Store your files on Dropbox without leaking
your file contents or access patterns to Dropbox .

I - ,⇒%miBoa3m
- HT

.

Client Dropbox

In both cases
, encryption can hide

contents of RAMIstorage, but access pattern
lioeaks .

→This is enough to leak all sorts of
sensitive information .

Examptes
Dropbox : Sizes of files leak typelcontent.

↳ Serve can learn what programs
you're running and when .

Enclave : for each patient w/ condition Xf
- look up patients phone #
- add to output

3 i
→÷÷÷:÷:÷.
⇐

Defa of Oran CGI:÷:L.PT
- RAM (bhysical)

misses an

%:*:c:÷÷÷:
duty -1← state

Logical memory : n words of length v
Physical memory

: N words of length w

Er ope {ReadCl , write til } , let Afp) be the
physical addresses that the ORAM client probes when

servicing of

0RAMPropertres1.Correut@s.Fo
. every sequence

B - { Opi
, Opa , } ,

where each op is a Ryu ,

client (talking to honest RAM) answer, each op
correctly maybe up to correctness error

.

2
. Security . For any two poly -size op sags of = length :

8 : (op .

,
. . . .

, 0pm)
⑥ = (op ,

'

,
. .
. . , op'm)

it holds that

{Atop ,) . -→Alopm)) -ofAkp .) , Hoppe) } .
⇒ORAM leaks A- of accesses to RAM .

Cas Sem . see encryption leaks msg length)

query
±

Sahil (see Elaine Shi 's notes on ORAM)

Simple solutions

- ORAM client stores all n words in its
internal state

. . . doesn't use RAM at all

↳ n words of storage
"stash

"

↳ O RAM accesses per op
- ORAM client reads entire RAM on every
op (uses encryption to hide contents)

↳ 011) words of storage leg . AES key)
↳ n RAM accesses per op .

Goya : Small storage + few RAM accesses per op.

[online " /
Best possible : O (log n) RAM accesses per op . ,

even if client stores n
'
bit, for E>o

f (Larsen & Nielsen 2018]

* Achieved by scheme we will see next class
[Path ORAM ") w/ some restrictions .

* Achieved by a very subtle scheme this year
2020 (ptonfma

"

) w/o restrictions .

ORAM vs PIR
-

Both primitives involve hiding client's access

pattern from a potentially adversarial server. . .

Good to understand how they differ.

ORAN PIR
-

-

- Memory content, on - DB is public , static
server changes w/
each query
- One client⇒ ore server - Many clients talk to

Sanne serve DB

- Supports reads & writes - Supports only private reads

- Server can process
- Linear server work

RIW ops in pdylogcr) per quarry
*

time on memory of
n words

- Can build from PRE .

-In single - server setting ,
requires pub . key crypto

" Private access to private data
" " Private reads to public data

"

t"R0RA
"

(Goldmich & Ostrovsky
'

92)

Simple t clean
. We will see a more efficient

construction neat class.

Client storage : Old words (PRF Ky)
serve storage : ht Olin) words

Off) RAM accesses per op .

,
amortized

#

key idea : Suppose RAM holds logical man
contents permuted according to Sone

it that only client knows
.

⇒
"

Read - once ORAM
"

. . . any sequence of ops to

distinct adds is indist.
RAM

-
'

Tik)
-

d

Tik)
-

-I

÷:
=

Yiladdr) -- physical odor i

t
"

(physical addrrlsaddr
-

it
-

Construction

* Initialize memory contents with encryption
of O 's (using seen sea Cnc scheme)
n data blocks

,
rn dummy blocks

,

rn stash blocks

* While true :

1
. Shuffle horn data + dummy blocks using
fresh random perm IT:[n - rn] → Cute] .

2
.

Process Tn ops :

- Read t write back entire stash
- If desired element is in stash

→ read one dummy block
- Else
→ read data block

- Read+ write back entire stash

3
.

Return all words to their starting location
.

"" ÷÷:

Details

step 1 : Sorting .
* Use PRP to assign tag Thi) to addri

.

* Run a sorting network to sort by tags in

Olnlsjn) Rsm access

step 2 : Access

* Read stash : rn resin accesses

* Read dataldmy Clem : l
' '

* Read stash : rn
"

step 3 : Un sort
, again using Butcher

Qnlg2n) RAM accesses

total cost : Olney 's) RAM accesses

per rn logical ops

⇒ Amortized Ocrnlsjn) cost per access.

So
,
we saw that 0hAM

is possible w/ Sym .

- key
tools w/ Otr login)
overhead per access .

Next time : a more efficient
scheme

.

